
1
UMass Amherst Team 7 MDR Report SDP 2019

TurnUp - Real Time Volume Control
Harold Healy, EE, Ryan Walsh, CSE, Rahaun Perkins, CSE, and Nicholas Kafasis, CSE

Abstract—The demand for autonomous systems is rapidly
increasing all over the world. Both suppliers and consumers
make every effort to use autonomous systems for their efficiency
and ease of use. This technology will bring that efficient and easy
automated technology to the music industry. Our system is an
intermediary device, designed to automatically regulate the
volume of an audio source depending on how much ambient
noise there is in the surrounding environment.

I. INTRODUCTION

 Autonomous systems are being used all over the world to
make tedious tasks disappear. From automatic thermostats
regulating the heat of buildings everywhere, to the brightness
on smartphones adjusting the screen brightness depending on
the light in the surrounding environment. Another nuance that
many people find themselves facing is volume control.
Whether it be turning up the volume on a TV or turning up the
music on a speaker, someone is always adjusting the volume
of an audio source depending on the ambient noise in the
surrounding environment. The goal of the system in this paper,
that we will refer to as our TurnUp device, is to automate that
volume adjustment for everyone.

The development of “smart” homes has been a popular area
of research recently. There are a wide range of ways to
connect devices like phones, lights, and TVs in order to
automate tasks. According to an IoT Innovation article,
“Utilizing integrated technological systems in your home is
one of the most significant new trends in digital
innovation.”[5] Our dynamic volume controller would add
another element of automation to the smart home.

There have been similar volume controllers created, but
they are either limited in use to very particular scenarios or
very expensive. One example is the TOA Electronics Digital
Ambient Noise Controller.[6] This model is on the market for
well over a thousand dollars and is meant for large scale
environments, such as malls and airports. This kind of solution
is not suitable for a normal consumer looking for a less
expensive product to use in a smaller scale environment.
Another product that is currently available is the International
Control Systems Automatic TV Controller.[7] This system
works exclusively for when the volume on the TV suddenly
becomes too loud. We want to make our DVC versatile and
inexpensive so that it can be a suitable product for the normal
household consumer wanting to further automate his/her
house.

We decided on the following requirements to make sure our
design provides the best experience for users: (1)Easy to use
interface (2) System will not exceed max volume setting, (3)
System will not react suddenly to isolated loud noises, (4)
System will function in multiple locations within desired
room. We chose an iOS app as a user interface in order

provide something that consumers are familiar with. The max
volume requirement is in place in order to prevent an unstable
feedback system, driving the system to an unreasonably high
volume and possibly causing hearing damage. The system
must not react to isolated loud noises because this would cause
rapid changes in volume that would be undesirable to the user.
Finally, the system must be able to function within multiple
locations of the desired room to allow a flexible and portable
system that can be easily moved if the dynamic of the room
changes.

The following specifications have been created to make sure
that the requirements are satisfied.

Our device will require an initial calibration by the user in
the room where the audio source is present. The system would
then regulate the volume of that audio source by controlling
what it sends to its speaker. The setup of the system will be
explained in more detail in the next section of the report.

Table 1: Specifications and requirements

Requirements Specification Value

UI will be user
friendly

iOS app allows for

easy calibration

and system set up

N/A

System will not
react suddenly to

isolated loud
noises

System will react
to noise above

desired ratio only
after a certain time

period

Sensitivity range

between 0 and 8

seconds

System will be

able to function in

different parts of a

room

System will work
within a distance

from audio source.
15 ft

System will not

exceed max

volume desired

System will not

exceed max

scaling value.

Max Scale value

of 17

2
UMass Amherst Team 7 MDR Report SDP 2019

 Figure 1: Block Diagram

II. DESIGN

A. Overview

Our block diagram is shown above in Figure 1. Our basic
design will be a system that lies on the path between an audio
output signal source, e.g. audio from a phone or a TV, and an
output speaker to play the source. The system will use an
external microphone to capture the source and environment
sound levels. The input sound source signal as well as the
captured microphone signal will be monitored continuously
over time. If the system detects a significant level of ambient
noise (i.e., a large ratio of microphone signal volume to
expected microphone signal volume based on the input
signal), then the system will increase the output volume that is
sent to the speaker until a satisfactory level of environment
noise to input source signal is regained.

Our design will center around a Raspberry Pi to regulate the
entire system. It will be the central hub responsible for
monitoring the microphone and original audio source signals,
as well as making the necessary calculations on these signals
to drive the necessary volume adjustments. The Raspberry Pi
will ultimately output a value that will program a digitally
programmable analog amplifier, and that amplifier is what will
increase the volume of the output signal sent to the output
speaker.

As we considered how to build the dynamic volume
adjustment system, it was clear that we needed a central
processing unit that would be able to handle the monitoring
and calculations of several external signals. In addition to
considering a Raspberry Pi, we first considered an Arduino to
handle the job. As we looked into an Arduino Uno, we saw
that it primarily operated with an ATmega328P
microcontroller, an 8-bit microcontroller with a clock speed of
16MHz [1]. Additionally, the Arduino had only 32 KB of
flash memory and 2 KB of SRAM memory for runtime data.

Lastly, the Arduino’s I/O interface includes only 14 I/O

pins [2]. We determined that for the live runtime calculation
necessary for our system, we would definitely need a device
with higher processing power than that of the ATmega328P,
and much more memory than that of the Arduino.
Additionally, the volume adjustment system design requires
several I/O peripherals (microphone, audio source, output
signal) to correctly run, and the limitation of 14 digital I/O
pins would be a hindrance to try and work a solution around.
That is why we turned to a much more computationally
capable device—the Raspberry Pi 3 Model B+. The Raspberry
Pi operates on a 1.4GHz 64-bit quad-core Arm processor. It
also contains 1 GB of SDRAM memory [3]. These processing
and memory specifications are much more suitable for the
level of processing that we will require for live-time audio
monitoring. Additionally, the Pi includes 4 USB 2.0 ports and
a 4-pole stereo output port [3], which is suitable for the
necessary external peripherals that we must connect to the
DVC. A bonus to the Raspberry Pi is that it contains built-in
Bluetooth and Wi-Fi capability [3], which allows us to expand
out to wireless connections with ease; this is a positive, as we
want to use wireless microphones and connect the system
wirelessly to a smartphone application.

Our design will also utilize a digitally programmable analog
amplifier to control the amplification of the output sound
signal. We had originally planned to simply digitally scale the
output signal in software running on the Raspberry Pi before
the signal was output. However, as we began working on the
DVC system, we discovered that digitally processing and
outputting live audio through the Pi resulted in poor quality
audio. This led us to rearrange the design so that the input
signal is also routed straight to an analog amplifier, which will
be programmed by I/O pins on the Pi itself, which we expect

3
UMass Amherst Team 7 MDR Report SDP 2019

to result in much higher quality audio.

As is shown in the block diagram, the Raspberry Pi is at the
center of the design, responsible for taking in the audio source
signal, the microphone signal, mobile device information, and
running central computing modules to control the DVC
system. The mobile device block refers to a smartphone
application that will allow the user to connect to the system
and control certain settings. The amplifier will be responsible
for modifying the volume of the output signal.

B. Initial Calibration

The function of the initial calibration stage is to run a
calibration process that will give the system a sense of the
expected microphone pickup signal intensity (volume) given a
certain input signal intensity (volume). This is necessary, as
the TurnUp system is designed so that the connected
microphone can be at a variable distance from the central
system, and the system may be placed in a wide variety of
environments, which will result in entirely different signal
volume responses. The reason that we specifically want this
expected microphone intensity vs. input intensity and
relationship is that if we can determine the expected
microphone pickup intensity over a chunk of time from an
input signal, we can compare that expected intensity to the
actual intensity that the microphone is observing. From that
comparison, we can determine if the actual microphone
intensity is significantly higher than the expected intensity
(i.e., a presence of ambient noise), and if that is the case, we
can increase the output signal volume to combat the ambient
noise.

The user is able to run the calibration process through a
smartphone application, which is described in section C.
When the calibration process starts, the audio source to the
speaker is first switched to the Raspberry Pi aux port by
setting the programmable switch using the GPIO pins. The
details of how the programmable switch and GPIO pins work
is covered in section F. Next, the system plays a constant
440hz tone signal from low to high volume from the aux port
to the output speaker that lasts about 10 seconds. While the
tone is playing, the system will record the relationship
between microphone pickup intensity and input signal
intensity. The intensities of each are calculated using the rms

function available in the audioop python library, which
calculates the root mean square (RMS) over a chunk of values
[8]. RMS values are also what we refer to as intensities. Once
the signal finishes playing, the audio source to the speaker is
set back to the main analog input by again setting the
programmable switch. In the end of the calibration stage, the
expected microphone intensity vs. input signal intensity
function will be stored internally, so that it may be used later
in the “Calculate Expected Mic Level” stage, which is defined
in section D. After some testing, we discovered that this
relationship forms a linear function (y=mx+b), as exhibited in
an example in Figure 2.

Figure 2. Microphone Pickup Intensity vs. Input signal Intensity Example

We can exploit this knowledge of a linear relationship in

order to efficiently store the function and use it for later
calculations. We now use a linear fit function from the numpy
python library to determine the slope m and the y-intercept b
of the data, which are only 2 variables we need to keep to
efficiently model the entire relationship [9]. Then, given the
intensity of an input signal, we may calculate:

Expected Mic. Intensity = m•(Input Signal Intensity) + b (1)

The values of m and b are stored in variables within the
main script at runtime, so that they may be used during the
current run of the system. These variables are also stored in a
JSON (JavaScript Object Notation) file [10]. This is so that
previous calibration settings may be loaded and used, so that
the user does not have to re-calibrate the system each time the
system is rebooted.

Our team tested calibrating the system using a variety of
different tones. We ran these tests in order to determine if the
440Hz tone would result in a graph that was good enough to
handle a diverse signal. The first alternate means of calibration
involved using filtered white noise and pink noise. This test
resulted in the calibration graph having a steep, sudden incline
in maximum intensity within the last few seconds of
recording. As a result, the best fit line resulting in a graph that
cause the system to overestimate the relative microphone
intensity. One reason for this steep intensity graph could be
that the frequency response of the microphone we were using
could not handle filtered white or pink noise at the highest
amplitude used for system calibration. Next, we tried
calibrating by playing 220Hz, 440Hz, and 880Hz all at the
same time. The resulting graph was very similar to the graph
that is generated by simply playing the 440Hz tone. As a
result, we continued to calibrate the system using the 440Hz
tone.

C. Smartphone Application

The iOS application is the interface that the end user
interacts with in order to properly set up and start using their
TurnUp device. The motivation behind a mobile application
for system setup is that just about everyone owns a
smartphone, and it provides a way to walk a user through
setup by displaying one simple instruction at a time on a
screen; this is generally a more attractive method than
presenting a user with an instruction manual. The application
contains the following five main phases to walk a user through
system setup: a welcome page, a device discovery phase, a

4
UMass Amherst Team 7 MDR Report SDP 2019

calibration phase, a sensitivity setting phase, and
summary/start listening phase. The application is written in
Swift, and it communicates with the DVC system via a Wi-Fi
connection.

The welcome page is a simple “start” page that simply
greets the user and presents them with a button that bring them
to the device discovery phase in order to begin system setup.

The device discovery phase allows the user to scan the
network for any TurnUp devices so that they may connect to
and control it. This is necessary, as the IP address of the
TurnUp device on the user network cannot be known in
advance. Therefore, we must run some sort of discovery
process in order to find and initiate communication with the
device. When the TurnUp device is on and running, it runs a
UDP (User Datagram Protocol) server on a predetermined port
number, 8156. During device discovery, the user’s phone
sends a UDP broadcast message to the predetermined port
8156. UDP broadcast messages are sent to every device on the
network, which allows us to initiate communication with the
device without initially knowing its IP address. The broadcast
message from the phone is a JSON file that contains the
message type (“discovery”) and an arbitrarily chosen port
number to which the TurnUp device may send a response. The
user phone then immediately opens a TCP (Transmission
Control Protocol) server on that chosen port to listen for
device responses. Upon receiving a UDP message, the TurnUp
device will try to unpack the message as a JSON file, and then
check if this is indeed a discovery message by checking the
type. If it is a discovery message, it will extract the response
port number from the JSON data; the device also now knows
the user phone’s IP address by checking the address field of
the UDP message. The device now constructs a discovery
response JSON message that includes the device’s name and a
new arbitrarily chosen main port to which the user may send
all future data. The device now sends this message to the
response port of the user phone, and it opens up a TCP server
on the chosen main port. This new server now allows the user
phone to initiate TCP connections with the TurnUp device at
will, as TCP is a more reliable form of data transfer than UDP.
The user phone receives the response data from the TurnUp
device, and it extracts the device name and main port number
from the JSON data. The device IP address can also be
extracted from the TCP data. The app then loads a table of
device names from devices that have responded to the
discovery message; this allows a user to choose a specific
device should they have multiple devices on their network. A
button allows a user to rerun discovery if necessary just in
case the device does not initially respond; the phone listens for
responses for two seconds before reloading the device name
table. After this, the user is able to select the appropriate
device from the table and continue on to the calibration phase.
From this point on, the phone is able to communicate with the
TurnUp device by sending TCP messages to the IP address
and main port number that have been obtained in this phase.

In the calibration phase, the user is presented with two
buttons: a “Calibrate” button and a “Load Calibration” button.

The “Calibrate” button sends a message to the device that
instructs it to run the initial calibration process that has been
described in section B. The “Load Calibration” button sends a
message to the device that will instruct it to load a previous
calibration graph if the device has been set up before, so that
the user does not have to recalibrate. If the device cannot
successfully find and load a previous calibration graph, the
user is presented with an error message stating that
recalibration is necessary. Upon successful calibration, the app
continues to the sensitivity setting stage.

In the sensitivity setting stage, the user is able to select a
sensitivity for their device using a slider; sensitivity is chosen
on a scale of 1-5. A brief message is displayed to the user
explaining that this setting will determine how quickly their
system will react to significant ambient noise. The specifics of
how sensitivity affects system functionality is covered in
section E. After selecting sensitivity, a message is sent to the
device containing the chosen sensitivity, and the app moves to
the summary/start listening phase.

The summary/start listening phase is the final stage of the
iOS application. This page tells the user that they have
successfully set up their device, and that they may begin
monitoring noise by pressing the “Start Listening” button. The
chosen sensitivity setting is also displayed for the user. This is
all shown in figure 3. Once the “Start Listening” button is
pressed, a message is sent
to the device that
instructs it to run the
main listening code that
monitors ambient noise,
which is described in the
sections below. After
pressed, the “Start
Listening” button turns
into a “Stop Listening”
button, which the user
may press if they want to
stop the live monitoring
of ambient noise; this
sends a message to the
device that commands it
to stop the main listening
code, and to stop
amplification, if any. On
the summary page, there
is also a “Change
Settings” button that
allows the user to choose a new sensitivity, and also a
“Reconfigure” button that allows the user to restart the entire
setup of their device from the beginning if needed.

The core of the iOS application was developed over the
period of about two months. The app’s visual appearance and
user flow was refined over the period of about two additional
months according to feedback a number of people that were
kind enough to test and review our app. This helped to ensure
that the overall application design was user friendly.

5
UMass Amherst Team 7 MDR Report SDP 2019

D. Calculate Expected Mic Level

The calculate expected mic level block calculates the
expected microphone intensity given the input signal intensity.
This calculation happens continuously over time as the system
is running as a means to live-monitor the sound level of the
surrounding environment. This block is implemented entirely
within software on the Raspberry Pi.

As mentioned previously in section B., the expected
microphone intensity vs. input signal intensity function is
effectively stored and modeled in software by the two values
m and b that describe the linear relationship. As chunks of an
input signal come in, the intensity over that chunk is
calculated using the RMS function. Next, the expected
microphone intensity is calculated by using the input intensity
as input to Eq. (1). This expected microphone level can then
be further used in the adjust output volume block to determine
if the output volume should be appropriately adjusted.

E. Adjust Output Volume

The next step in the core program of the TurnUp system is
adjusting the output volume as necessary. This part of the
software is the heart of the functionality of the volume control
system. The output volume of the system is controlled by a
digitally programmable potentiometer that the input signal
travels through on its way to the output speaker. The details of
how the potentiometer is controlled and how exactly it affects
the input signal are discussed in section F; for now, we simply
acknowledge that this is the manner in which we control
output volume.

The main algorithm that controls the system volume
adjustments is modeled by the finite state machine in Figure 4.

Figure 4: Volume Adjustment Algorithm FSM

Essentially, the device starts in the normal state where there
is no amplification and no significant ambient noise. Over
time, the system is constantly calculating the intensity of the
signal picked up by the microphone, and the intensity of the
sound signal that goes to the speaker, each over chunks of
1024 samples at a time as they come in. The chunk size of
1024 was chosen after testing a few different values, as it was
discovered to be a good balance of a long enough window so
that most of the samples for each calculation will overlap
should there be any delay between the reception of the input
signal and microphone signal, and it is also reasonably short
enough that the system will react in a timely manner.

Additionally, window sizes that are powers of 2 work most
efficiently in memory. The intensities are calculated using the
same RMS function of the audioop library that is used in
calibration.

After this, the expected microphone intensity is calculated
as a function of the using the method described in section D.

Next, the moving averages of the microphone signal
intensity and expected microphone intensity are each
calculated using the following moving average equation:

Moving Avg.= (Old Moving Avg.)•0.9+(new value)•0.1 (2)

This weighted moving average is designed so that the newest
intensities will contribute only a small amount to the average.
This way, a brief, sudden ambient noises should not
immediately trigger a reaction, instead the noise must persist
for some time to build up the intensity moving average in
order to trigger necessary reactions. Weights of 0.9 and 0.1
were found give satisfactory performance results after
considerable testing.

Next, the ratio of the average microphone intensity to the
average expected microphone intensity is calculated. This is
the ratio that the FSM is checking as the system operates.

If the ratio is greater than the constant threshold of 2, then
the FSM moves into a high ambient noise timing state. In this
state a timer begins, and if the FSM remains in this state until
either the ratio drops back below 2, or until the timer surpasses
a set time limit. The time limit is determined from the user
selected sensitivity setting as shown in the table 2.

Table 2:

Sensitivity

Sensitivity Time Limit (s)

1 8

2 6

3 4

4 2

5 0

These time limits were determined after testing a handful of
different time limit ranges. Sensitivity of 1 corresponding to 8
seconds was determined to be a reasonable low sensitivity
response time based on our experience, and sensitivity of 5
corresponding to 0 seconds (immediate response) was also
determined to be reasonable.

When in the timing state, if the ratio drops below two
before the timer expires, the system will go back to the normal
state. Otherwise, upon the timer expiring, the system moves to
the increase amplification state. Here the system will drive up
the output volume until the ratio has reached a goal value of
1.5, where it will move to the stable amplification state. The
goal ratio of 1.5 was chosen because we want the amplified
signal to remain at a stable volume for a reasonable amount of

6
UMass Amherst Team 7 MDR Report SDP 2019

time, and goal values closer to the ratio of 2 resulted in more
frequent back-and-forth changes between stable amplification
and increase amplification.

The system will remain in this state while the ratio remains
between 2 and 1.25. If the ratio rises back above 2, it will go
to the secondary ambient noise timing state, similar to the
original timing state, where it will again time to see if it should
return to the increase amplification state, or go back to stable
amplification. On the other hand, if the ratio drops below 1.25,
the system will continue to the low ambient noise timing state,
where timing before decreasing amplification will occur. The
ratio of 1.25 was determined after testing as a reasonable goal
before decreasing amplification, because a such a low ratio is
a good indicator that the ambient noise may have subsided.

In the low ambient noise timing state, the system now
checks if the ratio remains below 1.25 for the time limit,
where it will then move to the decrease amplification state.
The system will jump back to stable amplification should the
ratio rise back above 1.25 before the timer expires.

Finally, as the name suggests, the output volume
amplification will decrease while in the decrease amplification
state. If the ratio rises back above 1.25 while there is still some
amplification (scale > 1), the system will go back to stable
amplification. Otherwise, if the system keeps decreasing
amplification until the scale reaches 1, that means the system
is no longer amplifying, so the system returns to the normal
state. The scale relates to the potentiometer value, which will
be explained in more detail in the following section.

F. GPIO, PCB and Analog Switch

These blocks make adjustments to the signal sent to the
speaker. We use the built in GPIO pins on the Raspberry Pi to
send a string of bits to an amplifier with a digital
potentiometer at its input soldered to a PCB seen in Figure 5.
The GPIO pins from the Pi set the input signal to the amplifier
based on the scale factor calculated in the previous module.

In order to first test this block, we created the circuit on a
breadboard and manually changed resistance of a mechanical
potentiometer to make sure we can achieve the desired range
of signals from the circuit. Once we confirmed the range of
resistance needed from the potentiometer (10kOhm), we
included the model that best suits this specification on our
breadboard. Ultimately, we chose to use MCP41010 Digital
Potentiometer and LM481n-4 Audio Amplifier for our circuit
design. The MCP41010 model uses the Serial Programmable
Interface pins on the Pi to communicate with the rest of
system. [4]

The MCP41010 potentiometer can be set to 256 discrete
resistance values in the range of values 0Ω-10kΩ. The higher
the resistance value of the potentiometer, the more the signal
will be diminished, so the lower the output volume will be.
Therefore, we can control the output volume by assigning a
high base potentiometer value, and if amplification is
necessary, the potentiometer can be assigned a lower value to
achieve a higher output volume.

We tested the entire circuit with the rest of our system to
make sure that our speaker received the correct range of

amplitudes before sending out our PCB design to the
manufacturer.

After receiving and testing our PCB, we encountered a
problem with input signals to the PCB. During calibration, our
system would read input signals much lower than it should
have at the ADC at the input to the Pi. We later determined
that this was because that the two inputs to the PCB were
seeing different input impedances and therefore, the signal
going through the PCB and to the Pi and speaker was different
depending on which audio source it came from. We solved
this problem by integrating an analog audio switch at the input
to the PCB and using separate GPIO pins on the raspberry pi
to switch between the calibration signal and audio source. This
ensured that both sources saw the same impedance and
ultimately solved the problem.

Figure 5: PCB

G. Enclosure
The final step before the completion of the project was to

design an enclosure to house the various components of the
TurnUp system. The main design goals for the enclosure were
that it was to be compact, portable, and adequately protect the
working components that it housed. To accomplish we settled
a sort of double clam shell design with a middle section for
mounting and a lid on either side to close up the system.

As seen in figure 6 on the next page, one side of the middle
section the raspberry pi is mounted while on the reverse of that
same section the PCB and breadboard containing the
programmable switch are also mounted. A cut out allows
GPIO and power wires to connect the components on each
side of the section. Once the two lids fastened with hinges are
closed the system becomes a streamlined and compact final
product.

 In addition to accomplishing our original design goals for
the enclosure we achieved the added benefits of increased
reliability and increased audio fidelity. With the components
now rigidly mounted in an enclosure, and all audio wires
being directly soldered, the amount of distortion and signal
noise caused by loose and easily movable wire connections
will drastically be reduced. The enclosure was designed in
Autodesk Fusion 360 before being 3d printed at Umass digital
media lab using the fused filament fabrication process. The
resulting enclosure provided us with a cost effective, but a
portable and protective housing for the TurnUp system fit for
commercial release.

7
UMass Amherst Team 7 MDR Report SDP 2019

Figure 6: Enclosure

III. PROJECT MANAGEMENT

Our team consists of three Computer Systems Engineering
students and one Electrical Engineering student. This means
that our group has a strong software background. The different
roles of our project have been split up according to the
abilities of each member. The chart below shows the
responsibilities of each team member.
 The core software design was been split up between all 4
group members. This was the largest, and most time-
consuming part of the project. PCB design was the
responsibility of Harry, as he is the electrical engineer on the
team. Ryan had some experience in app development and
therefore handled the iOS app for our project. The other
software related parts of the project were split up evenly
between Nicholas and Rahaun, as they are computer systems
engineers.
 To keep a workflow and schedule, our team had weekly
meetings amongst ourselves and with our advisor. The
communication between our group consists of e-mail, text,
and in person meetings. Ultimately, we took a very unified
approach towards completing our project. This means that we
had been working on our portions of the project together
rather than combining individual work every week. This
ultimately worked well for the completion of our project.
 Finally, we put together a table for the cost of our project
both in terms of development stage and production stage. We
based our production costs off of bulk supply prices online,
typical manufacturer bulk pricing for PCBs and the cheapest
options we could find for single items online. We estimated
that our production cost would be around $132.25, which is
much better than other controllers in the market mentioned
earlier, such as the TOA Electronics Volume Controller.

Figure 7: Cost

IV. CONCLUSION

Since MDR, we have added a few key features to our
project. We integrated our final PCB design that was
described early in the paper. The switch used to send the
signal to either the Pi or analog output was also integrated.
This was an important step in our design as it solved many of
our signal issues. Furthermore, the FSM described earlier was
designed and uploaded to the final draft of the code. This FSM
ended up being a key feature of our design as it made the
system react in the smooth manor we hoped for. Finally, the
user interface was updated from the previous version and the
enclosure for the system was finished. Our team achieved our
goals and successfully created a volume control device.

While the project was completed there are still some aspects
that could be improved. One improvement would be to move
the code over to an embedded system that could process the
code without having to fun an entire OS in the background.
Another change that could be made is to write the code in C
rather than Python. While our python code works with our
design, the project seemed to have trouble running long term
without needing to be rebooted. One cause of this problem
could be due to memory overflows that could be worked
around in C, however, the problem needs to be further
investigated. Also, our algorithm for calibration and
adjustment works for our system design, however, testing with
different hardware and changing our adjustment algorithm
could potentially lead to a system that reacts smoothly for all
types of audio input. Finally, more powerful peripherals, such
as a 360˚ microphone with a higher frequency response could
improve the system.

V. Acknowledgment

Team Turn Up would like to thank Professor Pishro-Nik for
his guidance on this project. A special thanks to Professors
Kelly and Ganz for all of their helpful advice and feedback.
Thank you, Fran Caron, for providing us with a workspace
and tools. Finally, we would like to thank Professor Hollot,
Professor Soules, and Shira Epstein for their continued
support.

REFERENCES
[1] Ww1.microchip.com. (2018). ATmega48A/PA/88A/PA/168A/PA/328/P

Data Sheet. [online] Available at:
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-
88A-PA-168A-PA-328-P-DS-DS40002061A.pdf [Accessed 20 Dec.
2018].

[2] Store.arduino.cc. (2018). Arduino Uno Rev3. [online] Available at:
https://store.arduino.cc/usa/arduino-uno-rev3 [Accessed 20 Dec. 2018].

[3] Raspberry Pi. (2018). Raspberry Pi 3 Model B+ - Raspberry Pi. [online]
Available at: https://www.raspberrypi.org/products/raspberry-pi-3-
model-b-plus/ [Accessed 20 Dec. 2018].

[4] C. Wells, J. Becker, Low-Cost Digital Programmable Gain Amplifier
Reference Design. Texas Instruments, 2015.

[5] IoT Innovation. (2018). The Impact of Smart Homes Technology | IoT
Innovation. [online] Available at: https://internet-of-things-
innovation.com/insights/the-blog/smart-homes-technology-
impact/#.XBw691VKjIU [Accessed 21 Dec. 2018].

[6] Toaelectronics.com. (2018). Products - TOA Electronics. [online]
Available at: http://www.toaelectronics.com/products/audio-signal-

8
UMass Amherst Team 7 MDR Report SDP 2019

processors/dp-l2-digital-ambient-noise-controller [Accessed 21 Dec.
2018].

[7] Amazon.com. (2018). [online] Available at:
https://www.amazon.com/International-Controls-Systems-TVSR-
Automatic/dp/B000Q37TBY/ref=cm_cr_arp_d_product_top?ie=UTF8
[Accessed 21 Dec. 2018].

[8] “21.1. audioop - Manipulate raw audio data,” 21.1. audioop - Manipulate
raw audio data - Python 2.7.16 documentation. [Online]. Available:
https://docs.python.org/2/library/audioop.html. [Accessed: 14-May-
2019].

[9] “NumPy,” NumPy. [Online]. Available: https://www.numpy.org/.
[Accessed: 14-May-2019].

[10] “Introducing JSON,” JSON. [Online]. Available: https://www.json.org/.
[Accessed: 14-May-2019].

