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Abstract—The demand for autonomous systems is rapidly 
increasing all over the world. Both suppliers and consumers 
make every effort to use autonomous systems for their efficiency 
and ease of use.  This technology will bring that efficient and easy 
automated technology to the music industry. Our system is an 
intermediary device, designed to automatically regulate the 
volume of an audio source depending on how much ambient 
noise there is in the surrounding environment. 

I. INTRODUCTION 

 Autonomous systems are being used all over the world to 
make tedious tasks disappear. From automatic thermostats 
regulating the heat of buildings everywhere, to the brightness 
on smartphones adjusting the screen brightness depending on 
the light in the surrounding environment. Another nuance that 
many people find themselves facing is volume control. 
Whether it be turning up the volume on a TV or turning up the 
music on a speaker, someone is always adjusting the volume 
of an audio source depending on the ambient noise in the 
surrounding environment. The goal of the system in this paper, 
that we will refer to as our TurnUp device, is to automate that 
volume adjustment for everyone. 

The development of “smart” homes has been a popular area 
of research recently. There are a wide range of ways to 
connect devices like phones, lights, and TVs in order to 
automate tasks. According to an IoT Innovation article, 
“Utilizing integrated technological systems in your home is 
one of the most significant new trends in digital 
innovation.”[5] Our dynamic volume controller would add 
another element of automation to the smart home.  

There have been similar volume controllers created, but 
they are either limited in use to very particular scenarios or 
very expensive. One example is the TOA Electronics Digital 
Ambient Noise Controller.[6] This model is on the market for 
well over a thousand dollars and is meant for large scale 
environments, such as malls and airports. This kind of solution 
is not suitable for a normal consumer looking for a less 
expensive product to use in a smaller scale environment. 
Another product that is currently available is the International 
Control Systems Automatic TV Controller.[7] This system 
works exclusively for when the volume on the TV suddenly 
becomes too loud. We want to make our DVC versatile and 
inexpensive so that it can be a suitable product for the normal 
household consumer wanting to further automate his/her 
house. 

We decided on the following requirements to make sure our 
design provides the best experience for users: (1)Easy to use 
interface (2) System will not exceed max volume setting, (3) 
System will not react suddenly to isolated loud noises, (4) 
System will function in multiple locations within desired 
room. We chose an iOS app as a user interface in order 

provide something that consumers are familiar with. The max 
volume requirement is in place in order to prevent an unstable 
feedback system, driving the system to an unreasonably high 
volume and possibly causing hearing damage. The system 
must not react to isolated loud noises because this would cause 
rapid changes in volume that would be undesirable to the user. 
Finally, the system must be able to function within multiple 
locations of the desired room to allow a flexible and portable 
system that can be easily moved if the dynamic of the room 
changes. 

The following specifications have been created to make sure 
that the requirements are satisfied.  

Our device will require an initial calibration by the user in 
the room where the audio source is present. The system would 
then regulate the volume of that audio source by controlling 
what it sends to its speaker. The setup of the system will be 
explained in more detail in the next section of the report. 

 

Table 1: Specifications and requirements 

 

 

 

 

 

Requirements Specification Value 

UI will be user 
friendly 

iOS app allows for 

easy calibration 

and system set up 

N/A 

System will not 
react suddenly to 

isolated loud 
noises 

System will react 
to noise above 

desired ratio only 
after a certain time 

period 

Sensitivity range 

between 0 and 8 

seconds 

System will be 

able to function in 

different parts of a 

room 

System will work 
within a distance 

from audio source. 
15 ft 

System will not 

exceed max 

volume desired 

System will not 

exceed max 

scaling value. 

Max Scale value 

of 17 
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           Figure 1: Block Diagram 

II. DESIGN 

A. Overview 

Our block diagram is shown above in Figure 1. Our basic 
design will be a system that lies on the path between an audio 
output signal source, e.g. audio from a phone or a TV, and an 
output speaker to play the source. The system will use an 
external microphone to capture the source and environment 
sound levels. The input sound source signal as well as the 
captured microphone signal will be monitored continuously 
over time. If the system detects a significant level of ambient 
noise (i.e., a large ratio of microphone signal volume to 
expected microphone signal volume based on the input 
signal), then the system will increase the output volume that is 
sent to the speaker until a satisfactory level of environment 
noise to input source signal is regained. 

Our design will center around a Raspberry Pi to regulate the 
entire system. It will be the central hub responsible for 
monitoring the microphone and original audio source signals, 
as well as making the necessary calculations on these signals 
to drive the necessary volume adjustments. The Raspberry Pi 
will ultimately output a value that will program a digitally 
programmable analog amplifier, and that amplifier is what will 
increase the volume of the output signal sent to the output 
speaker. 

As we considered how to build the dynamic volume 
adjustment system, it was clear that we needed a central 
processing unit that would be able to handle the monitoring 
and calculations of several external signals. In addition to 
considering a Raspberry Pi, we first considered an Arduino to 
handle the job. As we looked into an Arduino Uno, we saw 
that it primarily operated with an ATmega328P 
microcontroller, an 8-bit microcontroller with a clock speed of 
16MHz [1]. Additionally, the Arduino had only 32 KB of 
flash memory and 2 KB of SRAM memory for runtime data.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Lastly, the Arduino’s I/O interface includes only 14 I/O 

pins [2]. We determined that for the live runtime calculation 
necessary for our system, we would definitely need a device 
with higher processing power than that of the ATmega328P, 
and much more memory than that of the Arduino. 
Additionally, the volume adjustment system design requires 
several I/O peripherals (microphone, audio source, output 
signal) to correctly run, and the limitation of 14 digital I/O 
pins would be a hindrance to try and work a solution around. 
That is why we turned to a much more computationally 
capable device—the Raspberry Pi 3 Model B+. The Raspberry 
Pi operates on a 1.4GHz 64-bit quad-core Arm processor. It 
also contains 1 GB of SDRAM memory [3]. These processing 
and memory specifications are much more suitable for the 
level of processing that we will require for live-time audio 
monitoring. Additionally, the Pi includes 4 USB 2.0 ports and 
a 4-pole stereo output port [3], which is suitable for the 
necessary external peripherals that we must connect to the 
DVC. A bonus to the Raspberry Pi is that it contains built-in 
Bluetooth and Wi-Fi capability [3], which allows us to expand 
out to wireless connections with ease; this is a positive, as we 
want to use wireless microphones and connect the system 
wirelessly to a smartphone application. 

Our design will also utilize a digitally programmable analog 
amplifier to control the amplification of the output sound 
signal. We had originally planned to simply digitally scale the 
output signal in software running on the Raspberry Pi before 
the signal was output. However, as we began working on the 
DVC system, we discovered that digitally processing and 
outputting live audio through the Pi resulted in poor quality 
audio. This led us to rearrange the design so that the input 
signal is also routed straight to an analog amplifier, which will 
be programmed by I/O pins on the Pi itself, which we expect 
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to result in much higher quality audio. 

As is shown in the block diagram, the Raspberry Pi is at the 
center of the design, responsible for taking in the audio source 
signal, the microphone signal, mobile device information, and 
running central computing modules to control the DVC 
system. The mobile device block refers to a smartphone 
application that will allow the user to connect to the system 
and control certain settings. The amplifier will be responsible 
for modifying the volume of the output signal. 

B. Initial Calibration 

The function of the initial calibration stage is to run a 
calibration process that will give the system a sense of the 
expected microphone pickup signal intensity (volume) given a 
certain input signal intensity (volume). This is necessary, as 
the TurnUp system is designed so that the connected 
microphone can be at a variable distance from the central 
system, and the system may be placed in a wide variety of 
environments, which will result in entirely different signal 
volume responses. The reason that we specifically want this 
expected microphone intensity vs. input intensity and 
relationship is that if we can determine the expected 
microphone pickup intensity over a chunk of time from an 
input signal, we can compare that expected intensity to the 
actual intensity that the microphone is observing. From that 
comparison, we can determine if the actual microphone 
intensity is significantly higher than the expected intensity 
(i.e., a presence of ambient noise), and if that is the case, we 
can increase the output signal volume to combat the ambient 
noise. 

The user is able to run the calibration process through a 
smartphone application, which is described in section C. 
When the calibration process starts, the audio source to the 
speaker is first switched to the Raspberry Pi aux port by 
setting the programmable switch using the GPIO pins. The 
details of how the programmable switch and GPIO pins work 
is covered in section F. Next, the system plays a constant 
440hz tone signal from low to high volume from the aux port 
to the output speaker that lasts about 10 seconds. While the 
tone is playing, the system will record the relationship 
between microphone pickup intensity and input signal 
intensity. The intensities of each are calculated using the rms 

function available in the audioop python library, which 
calculates the root mean square (RMS) over a chunk of values 
[8]. RMS values are also what we refer to as intensities. Once 
the signal finishes playing, the audio source to the speaker is 
set back to the main analog input by again setting the 
programmable switch. In the end of the calibration stage, the 
expected microphone intensity vs. input signal intensity 
function will be stored internally, so that it may be used later 
in the “Calculate Expected Mic Level” stage, which is defined 
in section D. After some testing, we discovered that this 
relationship forms a linear function (y=mx+b), as exhibited in 
an example in Figure 2. 

 
Figure 2. Microphone Pickup Intensity vs. Input signal Intensity Example 

 
We can exploit this knowledge of a linear relationship in 

order to efficiently store the function and use it for later 
calculations. We now use a linear fit function from the numpy 
python library to determine the slope m and the y-intercept b 
of the data, which are only 2 variables we need to keep to 
efficiently model the entire relationship [9]. Then, given the 
intensity of an input signal, we may calculate: 

Expected Mic. Intensity = m•(Input Signal Intensity) + b     (1) 

The values of m and b are stored in variables within the 
main script at runtime, so that they may be used during the 
current run of the system. These variables are also stored in a 
JSON (JavaScript Object Notation) file [10]. This is so that 
previous calibration settings may be loaded and used, so that 
the user does not have to re-calibrate the system each time the 
system is rebooted. 

Our team tested calibrating the system using a variety of 
different tones. We ran these tests in order to determine if the 
440Hz tone would result in a graph that was good enough to 
handle a diverse signal. The first alternate means of calibration 
involved using filtered white noise and pink noise. This test 
resulted in the calibration graph having a steep, sudden incline 
in maximum intensity within the last few seconds of 
recording. As a result, the best fit line resulting in a graph that 
cause the system to overestimate the relative microphone 
intensity. One reason for this steep intensity graph could be 
that the frequency response of the microphone we were using 
could not handle filtered white or pink noise at the highest 
amplitude used for system calibration. Next, we tried 
calibrating by playing 220Hz, 440Hz, and 880Hz all at the 
same time. The resulting graph was very similar to the graph 
that is generated by simply playing the 440Hz tone. As a 
result, we continued to calibrate the system using the 440Hz 
tone.  

C. Smartphone Application 

The iOS application is the interface that the end user 
interacts with in order to properly set up and start using their 
TurnUp device. The motivation behind a mobile application 
for system setup is that just about everyone owns a 
smartphone, and it provides a way to walk a user through 
setup by displaying one simple instruction at a time on a 
screen; this is generally a more attractive method than 
presenting a user with an instruction manual. The application 
contains the following five main phases to walk a user through 
system setup: a welcome page, a device discovery phase, a 
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calibration phase, a sensitivity setting phase, and 
summary/start listening phase. The application is written in 
Swift, and it communicates with the DVC system via a Wi-Fi 
connection. 

The welcome page is a simple “start” page that simply 
greets the user and presents them with a button that bring them 
to the device discovery phase in order to begin system setup. 

The device discovery phase allows the user to scan the 
network for any TurnUp devices so that they may connect to 
and control it. This is necessary, as the IP address of the 
TurnUp device on the user network cannot be known in 
advance. Therefore, we must run some sort of discovery 
process in order to find and initiate communication with the 
device. When the TurnUp device is on and running, it runs a 
UDP (User Datagram Protocol) server on a predetermined port 
number, 8156. During device discovery, the user’s phone 
sends a UDP broadcast message to the predetermined port 
8156. UDP broadcast messages are sent to every device on the 
network, which allows us to initiate communication with the 
device without initially knowing its IP address. The broadcast 
message from the phone is a JSON file that contains the 
message type (“discovery”) and an arbitrarily chosen port 
number to which the TurnUp device may send a response. The 
user phone then immediately opens a TCP (Transmission 
Control Protocol) server on that chosen port to listen for 
device responses. Upon receiving a UDP message, the TurnUp 
device will try to unpack the message as a JSON file, and then 
check if this is indeed a discovery message by checking the 
type. If it is a discovery message, it will extract the response 
port number from the JSON data; the device also now knows 
the user phone’s IP address by checking the address field of 
the UDP message. The device now constructs a discovery 
response JSON message that includes the device’s name and a 
new arbitrarily chosen main port to which the user may send 
all future data. The device now sends this message to the 
response port of the user phone, and it opens up a TCP server 
on the chosen main port. This new server now allows the user 
phone to initiate TCP connections with the TurnUp device at 
will, as TCP is a more reliable form of data transfer than UDP. 
The user phone receives the response data from the TurnUp 
device, and it extracts the device name and main port number 
from the JSON data. The device IP address can also be 
extracted from the TCP data. The app then loads a table of 
device names from devices that have responded to the 
discovery message; this allows a user to choose a specific 
device should they have multiple devices on their network. A 
button allows a user to rerun discovery if necessary just in 
case the device does not initially respond; the phone listens for 
responses for two seconds before reloading the device name 
table. After this, the user is able to select the appropriate 
device from the table and continue on to the calibration phase.  
From this point on, the phone is able to communicate with the 
TurnUp device by sending TCP messages to the IP address 
and main port number that have been obtained in this phase. 

In the calibration phase, the user is presented with two 
buttons: a “Calibrate” button and a “Load Calibration” button. 

The “Calibrate” button sends a message to the device that 
instructs it to run the initial calibration process that has been 
described in section B. The “Load Calibration” button sends a 
message to the device that will instruct it to load a previous 
calibration graph if the device has been set up before, so that 
the user does not have to recalibrate. If the device cannot 
successfully find and load a previous calibration graph, the 
user is presented with an error message stating that 
recalibration is necessary. Upon successful calibration, the app 
continues to the sensitivity setting stage. 

In the sensitivity setting stage, the user is able to select a 
sensitivity for their device using a slider; sensitivity is chosen 
on a scale of 1-5. A brief message is displayed to the user 
explaining that this setting will determine how quickly their 
system will react to significant ambient noise. The specifics of 
how sensitivity affects system functionality is covered in 
section E. After selecting sensitivity, a message is sent to the 
device containing the chosen sensitivity, and the app moves to 
the summary/start listening phase. 

The summary/start listening phase is the final stage of the 
iOS application. This page tells the user that they have 
successfully set up their device, and that they may begin 
monitoring noise by pressing the “Start Listening” button. The 
chosen sensitivity setting is also displayed for the user. This is 
all shown in figure 3. Once the “Start Listening” button is 
pressed, a message is sent 
to the device that 
instructs it to run the 
main listening code that 
monitors ambient noise, 
which is described in the 
sections below. After 
pressed, the “Start 
Listening” button turns 
into a “Stop Listening” 
button, which the user 
may press if they want to 
stop the live monitoring 
of ambient noise; this 
sends a message to the 
device that commands it 
to stop the main listening 
code, and to stop 
amplification, if any. On 
the summary page, there 
is also a “Change 
Settings” button that 
allows the user to choose a new sensitivity, and also a 
“Reconfigure” button that allows the user to restart the entire 
setup of their device from the beginning if needed. 

The core of the iOS application was developed over the 
period of about two months. The app’s visual appearance and 
user flow was refined over the period of about two additional 
months according to feedback a number of people that were 
kind enough to test and review our app. This helped to ensure 
that the overall application design was user friendly. 
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D. Calculate Expected Mic Level 

The calculate expected mic level block calculates the 
expected microphone intensity given the input signal intensity. 
This calculation happens continuously over time as the system 
is running as a means to live-monitor the sound level of the 
surrounding environment. This block is implemented entirely 
within software on the Raspberry Pi. 

As mentioned previously in section B., the expected 
microphone intensity vs. input signal intensity function is 
effectively stored and modeled in software by the two values 
m and b that describe the linear relationship. As chunks of an 
input signal come in, the intensity over that chunk is 
calculated using the RMS function. Next, the expected 
microphone intensity is calculated by using the input intensity 
as input to Eq. (1). This expected microphone level can then 
be further used in the adjust output volume block to determine 
if the output volume should be appropriately adjusted. 

E. Adjust Output Volume 

The next step in the core program of the TurnUp system is 
adjusting the output volume as necessary. This part of the 
software is the heart of the functionality of the volume control 
system. The output volume of the system is controlled by a 
digitally programmable potentiometer that the input signal 
travels through on its way to the output speaker. The details of 
how the potentiometer is controlled and how exactly it affects 
the input signal are discussed in section F; for now, we simply 
acknowledge that this is the manner in which we control 
output volume. 

The main algorithm that controls the system volume 
adjustments is modeled by the finite state machine in Figure 4. 
 

 
Figure 4: Volume Adjustment Algorithm FSM 
 

Essentially, the device starts in the normal state where there 
is no amplification and no significant ambient noise. Over 
time, the system is constantly calculating the intensity of the 
signal picked up by the microphone, and the intensity of the 
sound signal that goes to the speaker, each over chunks of 
1024 samples at a time as they come in. The chunk size of 
1024 was chosen after testing a few different values, as it was 
discovered to be a good balance of a long enough window so 
that most of the samples for each calculation will overlap 
should there be any delay between the reception of the input 
signal and microphone signal, and it is also reasonably short 
enough that the system will react in a timely manner. 

Additionally, window sizes that are powers of 2 work most 
efficiently in memory. The intensities are calculated using the 
same RMS function of the audioop library that is used in 
calibration. 

After this, the expected microphone intensity is calculated 
as a function of the using the method described in section D. 

Next, the moving averages of the microphone signal 
intensity and expected microphone intensity are each 
calculated using the following moving average equation: 

Moving Avg.= (Old Moving Avg.)•0.9+(new value)•0.1      (2) 

This weighted moving average is designed so that the newest 
intensities will contribute only a small amount to the average. 
This way, a brief, sudden ambient noises should not 
immediately trigger a reaction, instead the noise must persist 
for some time to build up the intensity moving average in 
order to trigger necessary reactions. Weights of 0.9 and 0.1 
were found give satisfactory performance results after 
considerable testing. 

Next, the ratio of the average microphone intensity to the 
average expected microphone intensity is calculated. This is 
the ratio that the FSM is checking as the system operates. 

If the ratio is greater than the constant threshold of 2, then 
the FSM moves into a high ambient noise timing state. In this 
state a timer begins, and if the FSM remains in this state until 
either the ratio drops back below 2, or until the timer surpasses 
a set time limit. The time limit is determined from the user 
selected sensitivity setting as shown in the table 2.  

 
Table 2: 

Sensitivity 

Sensitivity Time Limit (s) 

1 8 

2 6 

3 4 

4 2 

5 0 

These time limits were determined after testing a handful of 
different time limit ranges. Sensitivity of 1 corresponding to 8 
seconds was determined to be a reasonable low sensitivity 
response time based on our experience, and sensitivity of 5 
corresponding to 0 seconds (immediate response) was also 
determined to be reasonable. 

When in the timing state, if the ratio drops below two 
before the timer expires, the system will go back to the normal 
state. Otherwise, upon the timer expiring, the system moves to 
the increase amplification state. Here the system will drive up 
the output volume until the ratio has reached a goal value of 
1.5, where it will move to the stable amplification state. The 
goal ratio of 1.5 was chosen because we want the amplified 
signal to remain at a stable volume for a reasonable amount of 
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time, and goal values closer to the ratio of 2 resulted in more 
frequent back-and-forth changes between stable amplification 
and increase amplification. 

The system will remain in this state while the ratio remains 
between 2 and 1.25. If the ratio rises back above 2, it will go 
to the secondary ambient noise timing state, similar to the 
original timing state, where it will again time to see if it should 
return to the increase amplification state, or go back to stable 
amplification. On the other hand, if the ratio drops below 1.25, 
the system will continue to the low ambient noise timing state, 
where timing before decreasing amplification will occur. The 
ratio of 1.25 was determined after testing as a reasonable goal 
before decreasing amplification, because a such a low ratio is 
a good indicator that the ambient noise may have subsided. 

In the low ambient noise timing state, the system now 
checks if the ratio remains below 1.25 for the time limit, 
where it will then move to the decrease amplification state. 
The system will jump back to stable amplification should the 
ratio rise back above 1.25 before the timer expires. 

Finally, as the name suggests, the output volume 
amplification will decrease while in the decrease amplification 
state. If the ratio rises back above 1.25 while there is still some 
amplification (scale > 1), the system will go back to stable 
amplification. Otherwise, if the system keeps decreasing 
amplification until the scale reaches 1, that means the system 
is no longer amplifying, so the system returns to the normal 
state. The scale relates to the potentiometer value, which will 
be explained in more detail in the following section. 

F. GPIO, PCB and Analog Switch 

These blocks make adjustments to the signal sent to the 
speaker. We use the built in GPIO pins on the Raspberry Pi to 
send a string of bits to an amplifier with a digital 
potentiometer at its input soldered to a PCB seen in Figure 5. 
The GPIO pins from the Pi set the input signal to the amplifier 
based on the scale factor calculated in the previous module. 

In order to first test this block, we created the circuit on a 
breadboard and manually changed resistance of a mechanical 
potentiometer to make sure we can achieve the desired range 
of signals from the circuit. Once we confirmed the range of 
resistance needed from the potentiometer (10kOhm), we 
included the model that best suits this specification on our 
breadboard. Ultimately, we chose to use MCP41010 Digital 
Potentiometer and LM481n-4 Audio Amplifier for our circuit 
design. The MCP41010 model uses the Serial Programmable 
Interface pins on the Pi to communicate with the rest of 
system. [4]  

The MCP41010 potentiometer can be set to 256 discrete 
resistance values in the range of values 0Ω-10kΩ. The higher 
the resistance value of the potentiometer, the more the signal 
will be diminished, so the lower the output volume will be. 
Therefore, we can control the output volume by assigning a 
high base potentiometer value, and if amplification is 
necessary, the potentiometer can be assigned a lower value to 
achieve a higher output volume. 

We tested the entire circuit with the rest of our system to 
make sure that our speaker received the correct range of 

amplitudes before sending out our PCB design to the 
manufacturer.  

After receiving and testing our PCB, we encountered a 
problem with input signals to the PCB. During calibration, our 
system would read input signals much lower than it should 
have at the ADC at the input to the Pi. We later determined 
that this was because that the two inputs to the PCB were 
seeing different input impedances and therefore, the signal 
going through the PCB and to the Pi and speaker was different 
depending on which audio source it came from. We solved 
this problem by integrating an analog audio switch at the input 
to the PCB and using separate GPIO pins on the raspberry pi 
to switch between the calibration signal and audio source. This 
ensured that both sources saw the same impedance and 
ultimately solved the problem.  

 
Figure 5: PCB 
 

G. Enclosure  
The final step before the completion of the project was to 

design an enclosure to house the various components of the 
TurnUp system. The main design goals for the enclosure were 
that it was to be compact, portable, and adequately protect the 
working components that it housed. To accomplish we settled 
a sort of double clam shell design with a middle section for 
mounting and a lid on either side to close up the system. 

As seen in figure 6 on the next page, one side of the middle 
section the raspberry pi is mounted while on the reverse of that 
same section the PCB and breadboard containing the 
programmable switch are also mounted. A cut out allows 
GPIO and power wires to connect the components on each 
side of the section. Once the two lids fastened with hinges are 
closed the system becomes a streamlined and compact final 
product. 

   In addition to accomplishing our original design goals for 
the enclosure we achieved the added benefits of increased 
reliability and increased audio fidelity. With the components 
now rigidly mounted in an enclosure, and all audio wires 
being directly soldered, the amount of distortion and signal 
noise caused by loose and easily movable wire connections 
will drastically be reduced. The enclosure was designed in 
Autodesk Fusion 360 before being 3d printed at Umass digital 
media lab using the fused filament fabrication process. The 
resulting enclosure provided us with a cost effective, but a 
portable and protective housing for the TurnUp system fit for 
commercial release. 
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Figure 6: Enclosure  

III. PROJECT MANAGEMENT  

Our team consists of three Computer Systems Engineering 
students and one Electrical Engineering student. This means 
that our group has a strong software background. The different 
roles of our project have been split up according to the 
abilities of each member. The chart below shows the 
responsibilities of each team member.  
     The core software design was been split up between all 4 
group members. This was the largest, and most time-
consuming part of the project. PCB design was the 
responsibility of Harry, as he is the electrical engineer on the 
team. Ryan had some experience in app development and 
therefore handled the iOS app for our project.  The other 
software related parts of the project were split up evenly 
between Nicholas and Rahaun, as they are computer systems 
engineers. 
     To keep a workflow and schedule, our team had weekly 
meetings amongst ourselves and with our advisor. The 
communication between our group consists of e-mail, text, 
and in person meetings. Ultimately, we took a very unified 
approach towards completing our project.  This means that we 
had been working on our portions of the project together 
rather than combining individual work every week. This 
ultimately worked well for the completion of our project. 
     Finally, we put together a table for the cost of our project 
both in terms of development stage and production stage. We 
based our production costs off of bulk supply prices online, 
typical manufacturer bulk pricing for PCBs and the cheapest 
options we could find for single items online. We estimated 
that our production cost would be around $132.25, which is 
much better than other controllers in the market mentioned 
earlier, such as the TOA Electronics Volume Controller. 

 
Figure 7: Cost 

IV. CONCLUSION 

Since MDR, we have added a few key features to our 
project. We integrated our final PCB design that was 
described early in the paper. The switch used to send the 
signal to either the Pi or analog output was also integrated. 
This was an important step in our design as it solved many of 
our signal issues. Furthermore, the FSM described earlier was 
designed and uploaded to the final draft of the code. This FSM 
ended up being a key feature of our design as it made the 
system react in the smooth manor we hoped for. Finally, the 
user interface was updated from the previous version and the 
enclosure for the system was finished. Our team achieved our 
goals and successfully created a volume control device.  

While the project was completed there are still some aspects 
that could be improved. One improvement would be to move 
the code over to an embedded system that could process the 
code without having to fun an entire OS in the background. 
Another change that could be made is to write the code in C 
rather than Python. While our python code works with our 
design, the project seemed to have trouble running long term 
without needing to be rebooted. One cause of this problem 
could be due to memory overflows that could be worked 
around in C, however, the problem needs to be further 
investigated. Also, our algorithm for calibration and 
adjustment works for our system design, however, testing with 
different hardware and changing our adjustment algorithm 
could potentially lead to a system that reacts smoothly for all 
types of audio input. Finally, more powerful peripherals, such 
as a 360˚ microphone with a higher frequency response could 
improve the system.  
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